Int. J. Solids Structures, 1966, Vol. 2, pp. 125 to 139. Pergamon Press Ltd. Printed in Great Britain

THICKNESS-SHEAR AND FLEXURAL VIBRATIONS OF
PARTIALLY PLATED, CRYSTAL PLATES

R. D. MINDLIN and P. C. Y. Leg
Department of Civil Engineering, Columbia University, New York, N.Y.

Abstract—In this paper, mathematical solutions are exhibited which predict the influence of length and mass,
of rectangular electrode platings, on the sharpness of the fundamental thickness-shear resonance and on the
number and distribution of anharmonic overtones between the cut-off frequencies of the plated and unplated
portions of AT-type quartz plates.

1. INTRODUCTION

Two INTERESTING and useful effects of the size of electrode platings on vibrations of
AT-type quartz plates have been employed, principally by Bechmann {1], to improve
the performance of the crystals in filter circuits. First: if electrode platings, symmetrically
disposed on the two faces of an AT-type quartz plate, cover only a central portion of the
plate and if the plate is excited in a thickness-shear resonance, much of the motion of the
plate is confined to the region under the electrodes. Second: as the area of the electrodes
is reduced, the responses of the anharmonic overtones of thickness-shear are diminished,
successively, until, below a certain length/thickness ratio (Bechmann’s Number), the
response of the fundamental is, essentially, all that remains.

The first of these phenomena was given a qualitative, physical explanation, by Shockley,
Curran and Koneval [2], on the basis of the dispersion relations for elastic waves in
quartz plates [3, 4, 5}. Consider the dispersion curve (TS, in Fig. 1) for a straight-crested,
thickness-shear wave progressing in the direction of the axis of digonal symmetry in
the plane of an AT-type quartz plate without electrodes. At zero wave-number there is a
cut-off circular frequency, w,, below which the wave-number is imaginary; i.e. at fre-
quencies below w,, the wave is non-propagating-and decays exponentially with distance.
Alternatively, consider the analogous curve for a plate coated with electrodes. Owing to
the mass loading of the electrodes, the frequency is lowered throughout (curve TS, in
Fig. 1). In particular, the cut-off frequency @, is less than w,. Now suppose that only
a central portion of the plate is coated with electrodes across which the impressed voltage
has a frequency between w; and ®,. A propagating thickness-shear wave is excited in
the part of the plate under the electrodes; but the corresponding wave at the same
frequency, in the remainder of the plate, decays exponentially: resulting in a total reflec-
tion phenomenon whereby thickness-shear vibrational energy is trapped in the region
under the electrodes.

Now, flexural, face-shear and extensional waves can propagate at any frequency.
These waves are excited, at the boundary between the plated and unplated portions of
the plate, and propagate into both regions; so that, even at frequencies between &, and
w®,, some of the energy escapes from the plated region—mostly in the outgoing flexural
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Fi1G. 1. Dispersion curves for straight-crested, thickness-shear and flexural waves with wave-normals
in the direction of the digonal axis in unplated (7'S, and F,) and plated (TS, and F,) AT-type quartz
plates.

wave if the edge of the electrode is straight and perpendicular to the digonal axis in the
plane of the plate. It is shown, in this paper, how the energy in the escaping flexural
wave depends on the dimensions and material properties of the electrodes and the crystal
in the case of rectangular electrodes. The Q of the resonance (proportional to the ratio
of the energy trapped to the the energy lost) is found to be an almost periodic function
of the ratio of the length of the electrode, in the digonal direction, to the thickness of
the plate. The Q is a maximum when the length of the electrode is approximately an
integral multiple of the wavelength of the flexural wave in the plated portion of the plate;
i.e. there is little transmission of flexural energy across the boundary between the plated
and unplated portions when there is a node of flexure there. The minima of Q become
lower as the length of the electrodes is reduced and as the thickness of the electrodes is
increased.

An explanation of the phenomenon of Bechmann’s Number can be based on the
observations that only the deformation in the portion of the plate under the electrodes
contributes to the current through the crystal and only those anharmonic overtones
with frequencies less than , are trapped under the electrodes. The anharmonic overtone
modes of thickness-shear, in the plated portion of the plate, have successively shorter
and shorter half-wave-lengths: approximately equal to 1,1,%... of the length of a rectan-
gular electrode in the digonal direction. To each successively higher anharmonic overtone
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mode, there corresponds an only slightly higher frequency; so that, for a long enough
electrode, many anharmonic overtone modes can have frequencies less than w, and,
hence, can be totally trapped. A forcing frequency, equal to that of a trapped overtone
mode, will produce a relatively large amplitude of thickness-shear deformation in the
plated portion of the plate because much of the input energy is trapped there; but a
forcing frequency equal to that of an anharmonic overtone resonance above w, excites
the whole plate because only a small proportion of that mode is reflected at the edge
of the electrode. Consequently, a smaller proportion of the total energy is to be found in
the part of the plate under the electrodes—the part which contributes to the current
through the crystal. Now, if the electrode is small enough, the wave-length of the first
anharmonic overtone mode will be so short that the frequency of that mode, and all the
higher ones, will be greater than w, and there will be no total trapping of any anharmonic
overtone modes—only the fundamental can be trapped. Thus, the critical length of elec-
trode is simply the wave-length of a thickness-shear wave, in the plated portion of the
plate, at the cut-off frequency of the thickness-shear wave in the unplated portion of the
plate. The ratio of this critical wave-length to the thickness of the plate is Bechmann’s
Number.

Curran and Koneval [6] have made a series of experiments with rectangular electrodes
of successively smaller lengths. Their data of number and frequency of trapped anharmonic
overtones versus length of electrode are compared, in the second part of this paper,
with the results of a mathematical solution. Their formula for Bechmann’s Number,
in terms of @,/w, and a numerical constant, is compared with a formula, obtained
mathematically, expressed in terms of the dimensions and material properties of the
electrodes and the crystal.

2. THICKNESS-SHEAR AND FLEXURAL MOTIONS OF INFINITE,
UNPLATED AND PLATED PLATES

It has been shown [3, 4] that the motions of crystal plates are well described, up to a
frequency somewhat higher than the cut-off frequency of the lowest thickness-shear
mode, by solutions of a system of five, coupled, two-dimensional, second order partial
differential equations governing three components of displacement and two components
of rotation. Quartz is a crystal of the trigonal trapezohedral class [7]: with one trigonal
axis and, in the plane at right angles, three digonal axes. A rotated Y-cut plate [7] contains
a digonal axis and is cut at an angle (35° 15" for the AT-cut) to the trigonal axis. In the
case of straight-crested waves advancing in the direction of the digonal axis in the plane
of a rotated Y-cut plate, three equations of coupled thickness-shear, flexure and face-
shear separate from the five coupled equations [3]. If, in these three, the coupling with
face-shear is neglected, the remaining equations of coupled thickness-shear and flexure [8]
have the same form as Timoshenko’s equations of flexural vibrations of beams in which
transverse shear deformation and rotatory inertia are taken into account [9]:

0%v oY, 0%
w55+ 52) = o2 (1a)

v11h2 aZWx 2 a_v _ p_hi azwx
3 o MGl ¥ =TT 5 (1b)
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where x is the digonal axis in the plane of the plate, v is the deflection of the plate, ¥, is
the rotation of a line element initially normal to the middle plane of the plate, p is the
density, 2h is the thickness of the plate, k; is the shear-correction factor, ¢ is the shear
modulus of elasticity in the plane normal to the plate through the x-axis and 7y, is
Voigt’s stretch modulus of the plate in the x-direction. In terms of the compliances,
Spe» and stiffnesses, c,,, referred to rectangular coordinates x, y, z, with y normal to the
middle plane of the plate,

Y11 = $33/(811833 — 513)
= ¢y — €12/€22 — (Cra — €12€24/C22)* (Caa — €34/C22).
For the AT-cut of quartz,
Ce6 = 2901, ¥11 = 8593

in units of 10'° dyne/cm?, as calculated from Bechmann’s values of the principal con-
stants [10].

As in Timoshenko’s equations, the transverse shear force, V,, and the bending moment,
M, , both per unit width of plate, are given by

B 23y, Ov,
y, = 2hkfc66(~ ¥ l/lx>, M, = 37’“ g

. 2)

Consider, now, the same plate with electrode platings, on each face, of like thicknesses
2k’ and density p’. An alternating voltage, impressed across the electrodes, is mechanically
equivalent to a couple, C per unit area, distributed uniformly over the plate [11, 12]
If the remaining coupling with the electric field is neglected and if the stiffnesses of the
platings are neglected, the equations analogous to (1) are [13]

0?5 oy, 0%
E%C66<W - 5x> = p(l + R)‘é‘lj, (33)
bt o, (0 - C _ phX(l + 3R) 8%y,
3 e e\ g T ) T3 = 3 ot?’ (3b)
where barred symbols pertain to a plated plate and
R = 2p'H/ph, 4

i.e. R is the ratio of the mass per unit area of both electrodes to the mass per unit area
of the plate. The transverse shear force and bending moment, per unit width of plated
plate, are

_ o - — 3 '
Vx = 2hkfc66(_v + Wx>9 Mx = 2h ’))11 al//x (5)
ox 3 0x

The shear correction factor k, is expressed in terms of R by equating the thickness-
shear cut-off frequency, obtained from (3), with that obtained from a solution of the
three-dimensional equations of elasticity. In the case of (3), we set

C=1=0, W, = A expliid,t),
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where A is a constant. Then

@? = 3k3cge/ph*(1 + 3R). (6)
For simple thickness-shear motion, the three-dimensional equations reduce to
*u 0%u ou
C“W = p?, T, = c66a—y, 7

where y is the coordinate normal to the middle plane of the plate, u is the displacement
in the direction of x and T, is the shear stress on planes normal to x or y. For

u = A sin ny exp(iwt), 8)
the first of (7) yields
% = n%cee/p. 9
As boundary conditions we take
T,, = $2p’h’g% on y=x=h, (10)

i.e. the inertia of the electrode plating is balanced by a shear traction on the surface of
the plate. With (8) and the second of (7), (10) becomes

CeeMl €Os nh = 2h p/w? sin nh;
or, with (4) and (9),
Ryhtannh = 1. (11)
For R < 1, the smallest root of (11) is given, approximately, by
(nh), = n/2(1 + R). (12)

Upon substituting (12) into (9) and equating the resulting expression for w? to (6), we
find

ki = n%(1 + 3R)/12(1 + R)’, &} = ncee/4ph*(1 + R)% (13)

The corresponding shear correction factor and cut-off frequency for the unplated plate
(R =0) are

k? = n%/12, @? = nicse/4ph?. (14)

Thus, the effect of the mass of the electrodes is equivalent to increases of transverse
inertia, rotatory inertia and shear stiffness by factors 1 + R,1 + 3Rand (1 + 3R)/(1 + R)?,
respectively.

From (13) and (14),

w, /B, =1+ R. (15)

As shown in [14], inclusion of piezoelectric properties would make w,/®, slightly greater
than 1 + R; but this effect is omitted here.

Two fundamental solutions of the equations of motion, (1) and (3), are recorded
here for later use. First: for an applied voltage mechanically equivalent to Cq cos wt,
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with C, a constdnt, a particular solution of (3) is # = 0 and
¥, = ¥, cos wt, Yo = Co/2hk2 coe(l — w?/d3). (16)
Second: (1) and (3) admit the free wave solutions
. = Aexpli(éx — wt)], v = iaAh expli(éx — wt)],
¥, = Aexpliléx — wt)], b = igdhexpliEx — wi)],
if the amplitude ratios, « and &, satisfy the equations
¢h 14+ 9,8 — Q2

e T Zh ’ an
. h 1+ 7,,&h* - Q?
&= 2 é 2 Vugh ’ (18)

where

Q = w/w,, 11 = 711/3kicss

Q = w/@,, 11 = 111/3kicss,

r=(1+ RYI + 3R).
The second of (17) and (18) yield the dispersion relations depicted in Fig. 1 with dimension-
less frequency, Q, as ordinate and dimensionless wave-number, ¢ = ¢h or § = &h, as
abscissa. Points on the curves marked TS, and TS, correspond to motions in the un-
plated and plated plates, respectively, which are predominantly thickness-shear
(Jo| < 1, |& < 1). The curves marked F, and F, give the dispersion relations for pre-
dominantly flexural motion (ja| > 1, |& > 1). It will be observed that, in the frequency
range @, < ® < w,, ie. 1 < Q < w,/@,, the thickness-shear waves are propagating

waves (@ real) in the plated plate but non-propagating waves (¢ imaginary) in the unplated
plate; whereas flexural waves in both plates are propagating waves at all frequencies.

3. EFFECT OF SIZE OF ELECTRODES ON ¢

Suppose that the strip —a € x € a, on each face of an infinite plate, is coated with
electrodes, Fig. 2, across which is impressed a voltage mechanically equivalent to
C, cos ot with @, € w € w,. A suitable form of solution of (1), for the unplated portion
X > a,is

v, = A, sin(é;x — &a — wt) + A, exp[—&,(x — a)] cos wt
+ B, cos(¢,x — &,a — wt) + B, exp[—&,(x — a)]sin wt, (19a)
v= —ayAhcos({;x — & a — wt) + a,Ahexpl —&,(x — a)] cos wt
+a,Bhsin(é,x — &,a — ot) + a,Byhexp[—&,(x — a)] sin wt. (19b)

For the unplated portion x € —a, x and v, in (19), are changed to —x and —v. For the
plated portion —a € x € a, we take

¥, = Yo cos ot + (A, cos &, x + A, cos &,x) cos wt

+(B, cos é;x + B,cos &,x)sinwt,  (20a)
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PLATING

Fi1G. 2. Partially plated, infinite plate.

b = (@, A,hsin &, x + &,A,h sin £,x) cos wt
+(@,B,hsin &,x + a,B,hsin &,x)sincot,  (20b)

where , is given by (16).
The functions (19) and (20) are solutions of (1) and (3), respectively, if

2 = ?; =(—l)i(1 - Q%) — §,,0f

Y307 + (- 1)ef ?; '

& = (Bi — Qz - 1 - ?ll(ﬁiz
g &

i=12 (21)

i=12, (22)

where

@; = &h, @; = &h.

The second of (21) and (22) give the dispersion relations in the form of biquadratic
equations from which we select, as roots, the positive roots of

o7 = FH'{{(1 + 35,0 + 125, Q72 — DI — (= 1)1 + 35,,)}, (23)
@7 = Q{1 + 3§, — (- + 3r§y, ) — 127,41 — Q7)) (24)
With these choices, &, £,, £, and &, are all real and positive in the frequency range
@, <w<aw,ie Q<1 and Q> 1. Hence, in that range, the solutions (19) and (20)
have the following properties. In the unplated portion, there are two flexural waves
{A,, B,) ninety degrees out of phase and propagating away from the electrodes; and two

thickness-shear vibrations (A,, B,) ninety degrees out of phase and decaying away from
the electrodes. In the plated portion, there are a forced thickness-shear vibration ¥, cos wt
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and four additional vibrational motions: two of flexure (4,, B;) ninety degrees out of
phase and two of thickness-shear (4,, B,) ninety degrees out of phase.

The conditions of continuity at the boundaries of the plated and unplated portions
of the plate require that, on x = +a,

lﬁx= wx’ v =7, Mx=Mx7 Vx= I_/x'

These four conditions lead to eight equations on the eight constants A;, B;, 4;, B;:

(4, a, 1 0 1 o o o |[a] 1]
ay, a,, B, 0 B 0 0 0 A, k
Ay, a3z, —0, o 0 0 0 0 A, 0
Ay, Q42 =@, @4 0 0 0 A, _ 10

o 0 0 -1 0 1 by bullel "o 23
0 0 0 —-p, 0 B, by by, B, 0
0 0 0 0 o, —o, by b, B, 0
0 0O 0 0 ¢, —@, by by B, 0
where B - -
a,, =by, = —cos@,4 azy, = by, = d,sin @4
ayy = by = —cos @, a3, = by, = d,sin Pyd
a,, = b, = —kf,cos@,A a,, = b,y = &,sinP,A
a3 = byy = —kP,008 Grh  asy = by = G50 Gh
Bi =1 — (= oo, Bi=1+ a@;
/= afh k = ki/k3

For given forcing frequency w, material properties of plate and electrodes, mass ratio R
and dimensional ratio A, all of the coefficients in (25) are known and the amplitudes
A, A;, B;, B; can be computed.

The quantity of present interest is the Q of the partially plated plate. This is defined
as 2z times the ratio of the energy per cycle in the plated portion of the plate to the energy
per cycle in the escaping flexural waves—at resonance. Hence, to compute Q, the fre-
quency at resonance must be known. Now, resonance is identified by a maximum of the
current through the crystal. The current is proportional to the integral of the surface
charge over the electrodes; and the surface charge, in turn, is a linear function of the
thickness-shear strain 00/0x + l/-/x [12]. Hence the criterion for resonance is 2 maximum
of the amplitude of

j _ (@5/0x + W) dx. (26)

Upon substituting (20) into (26) and performing the integration, we find that the amplitude
of (26) is proportional to

S = - 1)" S + S 27
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where

Se=A+ A,$,p7 " sin @A + 4,8,0; " sin @4,

S, = B,f,@1 ' sin $,4 + B,f,5; ' sin §,2.
For given material properties and given R and A, the amplitudes 4;, B;, 4;, B; can be
computed, from (25), for trial values of dimensionless frequency Q; and the values of
Q that give maxima of S can be identified. The process can then be repeated over a range
of values of 4. The result is a spectrum of resonance frequencies versus A. The range of
trial frequencies can be narrowed by centering on the approximate values obtained by
the simplified procedure described in Section 4.

Next, the energies must be computed. The kinetic and potential energies, per cycle,
in the plated portion of the plate are given by [13]

1 T pa b 2 a_x 2
8T ool

0

1T o - )2 A%
U = ?J‘ j‘_a[ fc66h<a—x + ¢x> + %’yllh3<gx) :Idx dt,

0

where T (= 2n/w) is the period. Upon performing the integrations, we find
(3h3Ricee®) 'K = (A2 + B34 + py sin 23, 2)
+(A,4, + B,By)lks sin (5, — G4 + e sin (@ + G)A]
+(A43 + B))(ush + g sin 20,7)
+ 7oA, sin @14 + pgWod, sin §,4 + 2034,

(Gh*kices) U = (A% -+ B2)(v,A + v, sin 2@,4)
+(4,4, + B B,)[vysin(p; — @)4 + vy sin (@, + $,)]
+(A2 + B3)(vsA + vgsin 2p,4)
+V,PoA, sin @, A + velod, sin @4 + 2034,
where

py =1+ 3ra} vi = B} + 71,61

Hy = (1 — 3ra})/2¢, v, = (B} — 71.:81)/20,

#3 = 21 + 3ra,8,)/(§; — @) vy = 20,52 + §71:10:0)(@1 — P2)

Ha = 2(1 = 3ra,8,)(¢, + ¢,) ve = 2852 — 51:0:6.)/(P: + 72)

ps = 1 + 3ra vs = B3 + 71,03
e = (1 — 3ra?)/2¢, ve = (B — 71,1$3)/20,
u, = 4/p, Vg = 4/31/(51

us = 4/@, Vg = 452/‘52:
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The energy, per cycle, that escapes in the form of flexural waves in the unplated
portions of the plate is equal to the work done, per cycle, by the transverse shear force
and bending moment on sections of the unplated plate perpendicular to the x-axis:

T
E, = —2J <Vx@ + an‘//‘> dt,
0 ot ot

= dnhkices(AT + B (51,101 + a4B)).

As the material is assumed to be lossless, E, must be equal to the energy, per cycle,
entering the plated portion of the plate:

T pa 7T
E,,=Jj 2 gxar,
T

0
= dnh’kicee(l — QZ)‘;O(BJ’TI sin ;4 + B,@; ! sin @,4)

A comparison of independent computations of E, and E, serves as a check on a major
part of the entire computation.
The results of a series of computations of

Q =2n(K + U)E, (28)

for a partially plated AT-type plate for which w,/®@, = 10354 are illustrated in Fig. 3,
where Q is plotted against a/h. As may be seen, Q is an almost periodic function of a/h
with maxima exceeding 10® and minima ranging from about 103, for very short electrodes,
to about 10° for a/h near Bechmann’s Number which, as shown in the next section, is
14-3 for this case.

The maxima of Q occur, approximately, when the flexural mode in the plated portion
has nodes at the boundaries; i.e. whenever an integral number of wave-lengths of the
flexural mode just fits across the electrode:

a/h = mn/®,, m=123...,

where @, is given by (24) with i = 1 and the frequency that of resonance. The latter is
given closely enough, for the present purpose, by £} = 1. (The corresponding ®, is
illustrated in Fig. 1). Then, in terms of material properties and mass loading, the maxima
of Q occur, approximately, when

a/h = mu/({ ! + 3r)t, m=1,273...
This is insensitive to R ; so that, if we take R = 0, we find

a/h ~ mr/(3+nicee/dy ), m=1,2,3... 29)

For the AT-cut of quartz, a/h, in (29), is about 1-6m. Thus, for the AT-cut, the maxima
of @ occur at increments of electrode length of about 1'6 times the thickness of the plate.
Additional computations, with other mass ratios R, reveal that the locus of the
minima of Q is raised as the mass per unit area of the electrodes is reduced.
In a physical plate, there would be additional losses which would affect the Q in a
variety of ways. Losses through internal friction and the thermoelastic effect would
probably have a quantitative, rather than a qualitative, influence—resulting in a great
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F1G. 3. Variation of Q as a result of variation of energy in escaping flexural waves as ratio of length
of electrode to thickness of plate is changed.

reduction of the maxima of Q and a lesser reduction of the minima. On the other hand,
losses through coupling of thickness-shear with modes other than flexure, neglected in
the preceding analysis, would have a qualitative effect. Even in the case of straight-
crested waves advancing in the digonal direction, there would be coupling of thickness-
shear and flexure with face-shear. The energy in the escaping face-shear wave would
have a periodicity different from that of the flexural wave— with a consequent destruction
of the simple periodicity exhibited in Fig. 3. Moreover, the actual finite dimensions of
the electrodes and plate would not permit simple, straight-crested waves. There would
be some excitation of flexural, extensional and face-shear waves radiating laterally and
extensional waves radiating longitudinally-—each with its own periodicity of energy loss
versus dimensional ratios. What might be expected in a series of experiments, then,
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would be an apparently erratic fluctuation of Q about a general diminution with reduction
of areal dimensions (and increase of thickness) of electrodes.

4. BECHMANN’S NUMBER

In long, thin plates, the coupling of thickness-shear and flexural waves at a free
boundary does not materially affect the frequencies of the fundamental thickness-shear
mode and its anharmonic overtones in the neighborhood of the cut-off frequency [8].
Also, the flexural rigidity of the plate has little influence on the dispersion of thickness-
shear waves at long wave-lengths. As a consequence of these two properties, the fre-
quencies of the thickness-shear mode and its anharmonic overtones, in long, thin plates,
are governed, to a good approximation, by equations of motion in which the term
arising from the flexural rigidity of the plate is omitted—especially if, by the introduction
of a suitable correction factor, the resulting dispersion relation is adjusted to nearly its
original form: an adjustment which can be made very closely in a narrow frequency
range [15].

The contribution of flexural rigidity, in (1) and (3), may be removed by omitting the
first term in (1b) and in (3b). Then the equations of free vibration are

v oy,
kfc“(g)? + 8x> = —kypw?v, (30a)
2 61} 1 22
klc66 ﬁ(-’- l/’x = 3pw h wx’ (30b)
for the unplated plate and, for the plated plate:

A28 A
E%C()s(i—g + U:/’;;) = —k;p0*(1+R)p, (31a)

éxt o ox
E%C(,s(% + ‘Z’x) = 4pw?h*(1+ 3R, (31b)

where k, and k, are the factors introduced to correct the dispersion relations.
Equations (30) and (31) may be written in the forms

h* oy, h* &%y,

S . . 1__ 2 2 —_ 0’

U= T3 ox 0 3k, ax, U@ e 2
~ h2 5'/;): h2 62&)5 2/~2 7
A v o PR = o GRS 43

To fix the correction factors k, and k,, we first find the dispersion relations from the
approximate equations (32) and (33) by setting

Y, = A exp(—¢x), Y, = A cos éx,
with the results
E2h? = 3k,(1 — w?*/w?), E2h? = 3rk,y(w?/@?—1). (34)

These give the correct frequencies of zero wave-number. As we are interested only in
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the frequency range @, € w € w,, we choose k, and k, to give the correct wave-number
£ at w = @, and the correct wave-number £ at © = w,:

k, = ®3/3(1-@}/w}),  k, = ®I/3r(@i/@}-1), (3%5)
where
(DZ = [(pZ]w=G,’ (52 = [¢Z]w=w1 (36)

as calculated from (23) and (24), respectively, and identified in Fig. 1. Thus, k, and k, are
expressed in terms of material constants and mass loading. By this device, the dispersion
relations for thickness-shear waves are returned, in the range @, € o € ©,, to almost
exactly their forms before omission of the flexural rigidities.

Turning, now, to the problem of vibrations of an infinite plate coated with electrodes
over —a € x € a (Fig. 2) we take

Vidira = Aexpléla—x)}, ¥ i< o= Aexpléla+x), ¥, =Acoséx. (37)

Upon substituting (37) into (32) and (33), we find
0? = 0}l —9?%/3k;) = (1 +§2%/3rk,), (38)
where
¢=¢h  §=¢h
With the flexural rigidity omitted, the conditions of continuity at the boundaries of
the plated and unplated portions of the plate reduce to

v =7, V.=V, on x= ta (39)

Upon substituting (37) into (39), and using (38), we find

A @kysin gl kiodcos i

= 40
A ork, kio? (40)
where, as before, 4 = a/h. The second of (40) yields the frequency equation
a 1 rkfﬁﬂuf(p)
—=—tan Y} —221, 41
g (k%kza':f@ @

The quantities k, k,, k5, k,, w,,®, and r are determined solely by the material properties
of the crystal and the mass ratio R; while ¢ and § depend on the frequency through (38).
Hence, for a given frequency, there corresponds a sequence of roots a/h equal to a constant
multiplied by the integers 1,2,3,...; and only the constant changes for a different fre-
quency. The computation of a frequency spectrum is thus a simple matter. An example,
for w,/®, = 1-0354, is illustrated in Fig. 4 along with experimental data obtained by
Curran and Koneval [6]. (In the experiments, the width of the electrodes was small, in
comparison with the length 2a, instead of infinite as assumed in the mathematical solution.
However, it was shown by Sykes, many years ago [16], that the thickness-shear frequencies
are insensitive to width).

It. may be seen, by inspection of (41) or Fig. 4, that the number of anharmonic over-
tones between @, and w, increases with increasing a/h. To find the values of a/h for which
an additional overtone is included, it is only necessary to set w = w; in (41). Then,
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FIG. 4. Variation of number and distribution of resonances between cut-off frequencies. Comparison
of theory with experiments by Curran and Koneval.

from (38), ¢ = 0 and, from (36), § = ®,; so that
a/h = mn/®,, m=1273...

where, from (24),

- wi(1+3r7,,) 12r5,,(1 —@%/w?) \*
(D2= 1 i 11 1_ 1_ 11 _ 1 1 ] (42)
2 2037, (1+3r§y,)?
The value of a/h, below which there are no anharmonic overtones, is, then,
a/h = n/®,. (43)

For the AT-type plate with w,/®, = 10354, (43) yields a/h = 14-3.
Equation {43) is to be compared with Curran and Koneval’s

= 1
2= M( D1 ) (44)
h wl_wl

where M is a numerical constant estimated to be about 2-8. Equation (44) may be shown
to be an asymptotic form of (43) for R < 1. In that case,

1"‘0-)%/0)% ~21-o,/o,) <1, rx1, Ti1 & P = 4, 1/n2C66'

With these assumptions, (43) becomes

a 1 2y, \/ o,
- al- . 4
h n(6+ n2€66> CUl _(bl ( 5)

Hence, in terms of the elastic properties of the plate, Curran and Koneval’s constant M is

%
M=n(1+23’“>. (46)

6 Tmcee
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For the AT-cut of quartz, this formula gives M = 2-75 and (45) gives a/h = 14:6 for the
plate with w,/®@, = 1-:0354.

It may be remarked that the frequencies of the lowest branch in Fig. 4, although
computed by the approximate method described in this section, match the frequencies
computed in the preceding section extremely closely—even down to very small values
of a/h. This is due to the fact that the deformation in the plated portion is almost entirely
thickness-shear; i.e. very little of the reflection is in the form of flexure.
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Résumé—Dans cette étude, des solutions mathématiques sont présentées, et celles-ci prédisent I'influence de
la longueur et de la masse de revétements d’électrodes rectangulaires sur I’acuité de la résonance fondamentale
*“épaisseur-cisaillement” et sur le nombre et la distribution des vibrations anharmoniques entre les fréquences
de détente des portions recouvertes et non recouvertes de plaques de quartz du type -AT.

Zusammenfassung—Mathematische Losungen sind in dieser Abhandiung aufgezeigt welche den Einfluss der
Linge und Masse von rechteckigen Elektrodenplatten auf die Schirfe der grundlegenden Scherungs Resonanz
und auf die Anzahl und Verteilung von unharmonischen Oberténen zwischen den abgeschnittenen Frequenzen
der gedeckfen und nicht-gedeckfen Teilen der AT-artigen Quarzplatten vorhersagen.

AGcrpakt—HacTtosulas pabora JeMOHCTPHPYET MATe€MAaTHYECKHE DELUeHUS, YKA3bIBAIOLIME HA BIIMSAHHE
JUIMHBI M Macchl NMPAMOYIOJIbHBIX TaJIbBAHONOKPBITHH Ha OCTPOTY OCHOBHOIO pe3OHaHCa MNoNepeYyHHa
CIOBHIOB M Ha KOJIMYECTBO H pachpenerieHne aHrapMOHHYECKHX 06EPTOHOB MEXay I'PaHHYHBIMH YACTOTAMM
MOXPHITHIX M HEMOKPHITHIX YacTeit KBapleBbIX MIACTHHOK BUAa ‘AT,



